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CHAPTER

ONE

USING PIP

The most easy way to install autotab is using pip

pip install autotab

However, if you are interested in optimizing pipeline for deep learning models, you can choose to install tensorflow as
well by using all option

pip install autotab[all]

For list of all options see installation options options
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CHAPTER

TWO

USING GITHUB LINK

You can use github link for install autotab.

python -m pip install git+https://github.com/Sara-Iftikhar/AutoTab.git

The latest code however (possibly with less bugs and more features) can be insalled from dev branch instead

python -m pip install git+https://github.com/Sara-Iftikhar/AutoTab.git@dev

To install the latest branch (dev) with all requirements use all keyword

python -m pip install "AI4Water[all] @ git+https://github.com/Sara-Iftikhar/AutoTab.
→˓git@dev"
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CHAPTER

THREE

USING SETUP.PY FILE

go to folder where repository is downloaded

python setup.py install
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CHAPTER

FOUR

INSTALLATION OPTIONS

The all option will install tensorflow 2.7 version along with autotab and h5py.
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CHAPTER

FIVE

QUICK START

This page describes optimization of pipeline for different problems and using different models.

5.1 Optimize pipeline for machine learning models (regression)

This covers all scikit-learng models, catboost, lightgbm and xgboost

>>> from ai4water.datasets import busan_beach
>>> from autotab import OptimizePipeline

>>> data = busan_beach()
>>> input_features = data.columns.tolist()[0:-1]
>>> output_features = data.columns.tolist()[-1:]

>>> pl = OptimizePipeline(
... inputs_to_transform=input_features,
... outputs_to_transform=output_features,
... models=["LinearRegression",
... "LassoLars",
... "Lasso",
... "RandomForestRegressor",
... "HistGradientBoostingRegressor",
... "CatBoostRegressor",
... "XGBRegressor",
... "LGBMRegressor",
... "GradientBoostingRegressor",
... "ExtraTreeRegressor",
... "ExtraTreesRegressor"
... ],
... parent_iterations=30,
... child_iterations=12,
... parent_algorithm='bayes',
... child_algorithm='bayes',
... eval_metric='mse',
... monitor=['r2', 'nse'],
... input_features=input_features,
... output_features=output_features,
... split_random=True,
... )

(continues on next page)
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(continued from previous page)

>>> pl.fit(data=data)

>>> pl.post_fit(data=data)

5.2 machine learning models (classification)

This covers all scikit-learng models, catboost, lightgbm and xgboost

>>> from ai4water.datasets import MtropicsLaos
>>> from autotab import OptimizePipeline

>>> data = MtropicsLaos().make_classification(lookback_steps=1)
>>> input_features = data.columns.tolist()[0:-1]
>>> output_features = data.columns.tolist()[-1:]

>>> pl = OptimizePipeline(
... mode="classification",
... eval_metric="accuracy",
... inputs_to_transform=input_features,
... outputs_to_transform=output_features,
... models=["ExtraTreeClassifier",
... "RandomForestClassifier",
... "XGBClassifier",
... "CatBoostClassifier",
... "LGBMClassifier",
... "GradientBoostingClassifier",
... "HistGradientBoostingClassifier",
... "ExtraTreesClassifier",
... "RidgeClassifier",
... "SVC",
... "KNeighborsClassifier",
... ],
... parent_iterations=30,
... child_iterations=12,
... parent_algorithm='bayes',
... child_algorithm='bayes',
... monitor=['accuracy'],
... input_features=input_features,
... output_features=output_features,
... split_random=True,
... )

>>> pl.fit(data=data)

>>> pl.post_fit(data=data)

10 Chapter 5. quick start
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5.3 deep learning models (regression)

This covers MLP, LSTM, CNN, CNNLSTM, TFT, TCN, LSTMAutoEncoder for regression . Each model can consist
of stacks of layers. For example MLP can consist of stacks of Dense layers. The number of layers are also optimized.
When using deep learning models, also set the value fo epochs because the default value is 14 which is too small for
a deep learning model. Also consider setting values for batch_size and lr.

>>> from ai4water.datasets import busan_beach
>>> from autotab import OptimizePipeline

>>> data = busan_beach()
>>> input_features = data.columns.tolist()[0:-1]
>>> output_features = data.columns.tolist()[-1:]

>>> pl = OptimizePipeline(
... inputs_to_transform=input_features,
... outputs_to_transform=output_features,
... models=["MLP", "LSTM", "CNN", "CNNLSTM", "TFT", "TCN", "LSTMAutoEncoder"],
... parent_iterations=30,
... child_iterations=12,
... parent_algorithm='bayes',
... child_algorithm='bayes',
... eval_metric='mse',
... monitor=['r2', 'nse'],
... input_features=input_features,
... output_features=output_features,
... split_random=True,
... epochs=100,
... )

>>> pl.fit(data=data)

>>> pl.post_fit(data=data)

5.4 deep learning models (classification)

This covers MLP, LSTM, CNN, CNNLSTM, TFT, TCN, LSTMAutoEncoder for classification problem. Each model
can consist of stacks of layers. For example MLP can consist of stacks of Dense layers. The number of layers are also
optimized.

>>> from ai4water.datasets import MtropicsLaos
>>> from autotab import OptimizePipeline

>>> data = MtropicsLaos().make_classification(lookback_steps=1,)
>>> input_features = data.columns.tolist()[0:-1]
>>> output_features = data.columns.tolist()[-1:]

>>> pl = OptimizePipeline(
... mode="classification",
... eval_metric="accuracy",
... inputs_to_transform=input_features,

(continues on next page)

5.3. deep learning models (regression) 11
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(continued from previous page)

... outputs_to_transform=output_features,

... models=["MLP", "CNN"],

... parent_iterations=30,

... child_iterations=12,

... parent_algorithm='bayes',

... child_algorithm='bayes',

... monitor=['f1_score'],

... input_features=input_features,

... output_features=output_features,

... split_random=True,

... epochs=100,

... )

>>> pl.fit(data=data)

>>> pl.post_fit(data=data)

5.5 deep learning models (multi-class classification)

For multi-class classification with neural networks, we must set num_classes argument to some value greater than 2.

12 Chapter 5. quick start



CHAPTER

SIX

FREQUENTLY ASKED QUESTIONS

6.1 What is difference between parent and child iterations/algorithm?

AutoTab operates based upon parent and child optimization iterations The parent iteration is responsible for prepro-
cessing step optimization and model optimization. During each parent iteration, when the preprocessing and model is
selected/suggested by the algorithm for this iteration, the child optimization loops starts. The job of child optimiza-
tion loop is to optimize hyperparameters of the selected/suggested model. The user can specify any algorithm from
following algorithms for parent and child optimization algorithms.

• bayes

• random

• grid

• bayes_rf

• tpe

• atpe

• cmaes

6.2 what splitting scheme is used

By default it is supposed that the data is split into 3 sets i.e. training, validation and test sets. validation data is only
used during pipeline optimization inside .fit method while the test data is only used after optimization. If you have
only two sets i.e. training and validation, set fit_on_all_train_data to False during post_fit

6.3 Is the pipeline optimized for test data or validation data?

for validation data

13
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6.4 I don’t want to optimize preprocessing step

If you dont want any preprocessing steps, keep inputs_to_transform and outputs_to_transform arguments equal to
None or an empty list. In this way transformations will not be optimized for both inputs and targets. As shown in below
example,

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(
... inputs_to_transform=[],
... outputs_to_transform=[],
... )
>>> results = pl.fit(data=data)

6.5 I don’t want to optimize hyperprameters of the models

If you dont want to optimize hyperparameters of the models, the child iterations needs to be set to zero. As shown in
below example,

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(child_iterations=0)
>>> results = pl.fit(data=data)

6.6 I don’t want to optimize model selection

If you dont want to optimize model selection, keep models argument equals to None or an empty list. As shown in
below example,

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(models=[])
>>> results = pl.fit(data=data)

6.7 I want to optimize pipeline for only one model

You can set models parameter to the desired model. In this way, pipeline will be optimized by using only one model.
For example, in the following code, only AdaBoostRegressor will be used in pipeline optimization.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(
>>> models=["AdaBoostRegressor"])
>>> results = pl.fit(data=data)

14 Chapter 6. Frequently Asked Questions
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6.8 I want to optimize pipeline for only selected models

List the desired models in models as a list. In this way, pipeline will be optimized for the selected models.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(
>>> models=[
... "GradientBoostingRegressor",
... "HistGradientBoostingRegressor",
... "DecisionTreeRegressor",
... "CatBoostRegressor",
... "ExtraTreeRegressor",
... "ExtraTreesRegressor",
... ])
>>> results = pl.fit(data=data)

6.9 Can I use different optimization algorithms for parent and child
iterations

Different optimization algorithms can be set by parent_algorithm and child_algorithm.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(
... parent_algorithm="bayes",
... child_algorithm="bayes"
... )
>>> results = pl.fit(data=data)

6.10 How to monitor more than one metrics

The metrics you want to monitor can be given to monitor as a list. In this example, two metrics NSE and $R^2$ are
being monitored.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(monitor=['r2', 'nse'])
>>> results = pl.fit(data=data)

6.11 How to find best/optimized pipeline

There are two functions to get best pipeline after optimization. They are get_best_pipeline_by_metric which returns
optimized pipeline according to given metric. On the other hand, get_best_pipeline_by_model gives us best pipeline
according to given model.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline()
>>> results = pl.fit(data=data)

(continues on next page)

6.8. I want to optimize pipeline for only selected models 15
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(continued from previous page)

>>> pl.get_best_pipeline_by_metric(metric_name='nse')
>>> pl.get_best_pipeline_by_model(model_name='RandomForest_regressor')

6.12 Find best pipeline with respect to a specific (performance) metric

get_best_pipeline_by_metric function can be used to get best pipeline with respect to a specific (performance) metric.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline()
>>> results = pl.fit(data=data)
>>> pl.get_best_pipeline_by_metric(metric_name='nse')

6.13 Find best pipeline with respect to a particular model

get_best_pipeline_by_model returns the best pipeline with respect to a particular model and performance metric. The
metric must be recorded i.e. must be given as monitor argument.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline()
>>> results = pl.fit(data=data)
>>> pl.get_best_pipeline_by_model(model_name='RandomForest_regressor')

6.14 Change search space of a particular model

update_model_space updates or changes the search space of an already existing model.

>>> pl = OptimizePipeline(...)
>>> rf_space = {'max_depth': [5,10, 15, 20],
>>> 'n_models': [5,10, 15, 20]}
>>> pl.update_model_space({"RandomForestRegressor": rf_space})

6.15 consider only selected transformations

Selected transformations can be given to input_transformations and output_transformations. In this way, the given
transformations will be used for preprocessing steps.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(
... input_transformations=['minmax', 'log', 'zscore'],
... output_transformations=['quantile', 'box-cox', 'yeo-johnson']
... )
>>> results = pl.fit(data=data)

16 Chapter 6. Frequently Asked Questions
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6.16 do not optimize transformations for input data

If you dont want to optimize transformations for input data, keep inputs_to_transform argument equal to None or an
empty list. In this way transformations will not be optimized for input data.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(inputs_to_transform=[])
>>> results = pl.fit(data=data)

6.17 change number of optimization iterations of a specific model

Number of optimization iterations for a particular model can be changed by using change_child_iteration function after
initializing the OptimizePipeline class. For example we may want to change the child hpo iterations for one or more
models. We may want to run only 10 iterations for LinearRegression but 40 iterations for XGBRegressor. In such a
case we can use this function to modify child hpo iterations for one or more models. The iterations for all the remaining
models will remain same as defined by the user at the start.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(...)
>>> pl.change_child_iteration({"XGBRegressor": 10})
#If we want to change iterations for more than one models
>>> pl.change_child_iteration(({"XGBRegressor": 30,
>>> "RandomForestRegressor": 20}))

6.18 where are all the results stored

The results are stored in folder named results in the current working directory. The exact path of stored results can be
checked by printing model.path.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(...)
>>> print(pl.path)

6.19 what if optimization stops in the middle

If optimization stops in the middle due to an error, remaining results can be saved and analyzed by using these com-
mands.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(...)
>>> pl.fit(data=data)
.. # if above command stops in the middle due to an error
>>> pl.save_results()
>>> pl.post_fit(data=data)

6.16. do not optimize transformations for input data 17
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6.20 what is config.json file

config.json is a simply plain text file that stores information about pipeline such as parameters, pipeline configuration.
The pipeline can be built again by using from_config_file method as shown below.

>>> from autotab import OptimizePipeline
>>> config_path = "path/to/config.json"
>>> new_pipeline = OptimizePipeline.from_config_file(config_path)

6.21 How to include results from previous runs

The path to iterations.json from previous pipeline results has to be given to fit function in order to include results from
previous runs.

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(...)
>>> fpath = "path/to/previous/iterations.json"
>>> results = pl.fit(data=data, previous_results=fpath)

6.22 What versions of underlying libraries do this package depends

Currently AutoTab is strongly coupled with a ML python framework AI4Water, whose version should be 1.2 or greater.
Another dependency is h5py which does not have any specific version requirement.

6.23 how to use cross validation during pipeline optimization

By default the pipeline is evaluated on the validation data according to eval_metric. However, you can choose to
perform cross validation on child or parent or on both iterations. To perform cross validation at parent iterations set
cv_parent_hpo to True. Similarly to perform cross validation at child iteration, set cv_child_hpo to True. You must
pass the cross_validator argument as well to determine what kind of cross validation to be performed. Consider
the following example

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(
...
... cv_parent_hpo=True,
... cross_validator={"KFold": {"n_splits": 5}},
... )

Instead of KFold, we also choose LeaveOneOut, or ShuffleSplit or TimeSeriesSplit.

18 Chapter 6. Frequently Asked Questions
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6.24 how to change search space for batch_size and learning rate

The learning_rate and batch_size search space is only active for deep learning models i.e. when the category is “DL”.
The default search space for learning rate is Real(low=1e-5, high=0.05, num_samples=10, name="lr")while
for batch_size, the default search space is [8, 16, 32, 64]. We can change the default search space by making use of
change_batch_size_space and change_lr_space methods after class initialization. For example we can achieve
a different batch_size search space as below

>>> from autotab import OptimizePipeline
>>> pl = OptimizePipeline(
... ...
... category="DL
... )
... pl.change_batch_size_space([32, 64, 128, 256, 512])

6.24. how to change search space for batch_size and learning rate 19
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CHAPTER

SEVEN

OPTIMIZEPIPELINE

class autotab.OptimizePipeline(inputs_to_transform, input_transformations: Optional[Union[list, dict]] =
None, outputs_to_transform=None, output_transformations: Optional[list]
= None, models: Optional[list] = None, parent_iterations: int = 100,
child_iterations: int = 25, parent_algorithm: str = 'bayes', child_algorithm:
str = 'bayes', eval_metric: Optional[str] = None, cv_parent_hpo:
Optional[bool] = None, cv_child_hpo: Optional[bool] = None, monitor:
Optional[Union[list, str]] = None, mode: str = 'regression', num_classes:
Optional[int] = None, category: str = 'ML', prefix: Optional[str] = None,
**model_kwargs)

optimizes model/estimator, its hyperparameters and preprocessing operation to be performed on input and output
features. It consists of two hpo loops. The parent or outer loop optimizes preprocessing/feature engineering,
feature selection and model selection while the child hpo loop optimizes hyperparmeters of child hpo loop.

- metrics_

a pandas DataFrame of shape (parent_iterations, len(monitor)) which contains values of metrics being
monitored at each parent iteration.

- val_scores_

a 1d numpy array of length equal to parent_iterations which contains value of evaluation metric at each
parent iteration.

- parent_suggestions_

an ordered dictionary of suggestions to the parent objective function during parent hpo loop

- child_val_scores_

a numpy array of shape (parent_iterations, child_iterations) containing value of eval_metric at all child hpo
loops

- optimizer_

an instance of ai4water.hyperopt.HyperOpt [1]_ for parent optimization

- models

a list of models being considered for optimization

- model_space

a dictionary which contains parameter space for each model

21
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Example

>>> from autotab import OptimizePipeline
>>> from ai4water.datasets import busan_beach
>>> data = busan_beach()
>>> input_features = data.columns.tolist()[0:-1]
>>> output_features = data.columns.tolist()[-1:]
>>> pl = OptimizePipeline(input_features=input_features,
>>> output_features=output_features,
>>> inputs_to_transform=input_features)
>>> results = pl.fit(data=data)

Note: This optimization always solves a minimization problem even if the val_metric is $R^2$.

Undoc-members

Show-inheritance

__init__(inputs_to_transform, input_transformations: Optional[Union[list, dict]] = None,
outputs_to_transform=None, output_transformations: Optional[list] = None, models:
Optional[list] = None, parent_iterations: int = 100, child_iterations: int = 25, parent_algorithm:
str = 'bayes', child_algorithm: str = 'bayes', eval_metric: Optional[str] = None, cv_parent_hpo:
Optional[bool] = None, cv_child_hpo: Optional[bool] = None, monitor: Optional[Union[list,
str]] = None, mode: str = 'regression', num_classes: Optional[int] = None, category: str = 'ML',
prefix: Optional[str] = None, **model_kwargs)

initializes the class

Parameters

• inputs_to_transform (list) – Input features on which feature engineer-
ing/transformation is to be applied. By default all input features are considered. If
you want to apply a single transformation on a group of input features, then pass this as
a dictionary. This is helpful if the input data consists of hundred or thousands of input
features.

• input_transformations (list, dict) – The transformations to be considered for in-
put features. Default is None, in which case all input features are considered.

If list, then it will be the names of transformations to be considered for all input features.
By default following transformations are considered

– minmax rescale from 0 to 1

– center center the data by subtracting mean from it

– scale scale the data by dividing it with its standard deviation

– zscore first performs centering and then scaling

– box-cox

– yeo-johnson

– quantile

– robust

– log

22 Chapter 7. OptimizePipeline
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– log2

– log10

– sqrt square root

The user can however, specify list of transformations to be considered for each input feature.
In such a case, this argument must be a dictionary whose keys are names of input features
and values are list of transformations.

• outputs_to_transform (list, optional) – Output features on which feature engi-
neering/transformation is to be applied. If None, then transformations on outputs are not
applied.

• output_transformations – The transformations to be considered for outputs/targets.
The user can consider any transformation as given for input_transformations

• models (list, optional) – The models/algorithms to consider during optimzation. If
not given, then all available models from sklearn, xgboost, catboost and lgbm are consid-
ered. For neural neworks, following 6 model types are considered by default

– MLP [1]_ multi layer perceptron

– CNN2 1D convolution neural network

– LSTM3 Long short term memory network

– CNNLSTM4 CNN-> LSTM

– LSTMAutoEncoder5 LSTM based autoencoder

– TCN6 Temporal convolution networks

– TFT7 Temporal fusion Transformer

However, in such cases, the category must be DL.

• parent_iterations (int, optional (default=100)) – Number of iterations for
parent optimization loop

• child_iterations (int, optional) – Number of iterations for child optimization
loop. It set to 0, the child hpo loop is not run which means the hyperparameters of the
model are not optimized. You can customize iterations for each model by making using of
:meth: change_child_iterations method.

• parent_algorithm (str, optional) – Algorithm for optimization of parent optimza-
tion

• child_algorithm (str, optional) – Algorithm for optimization of child optimization

• eval_metric (str, optional) – Validation metric to calculate val_score in objective
function. The parent and child hpo loop optimizes/improves this metric. This metric is
calculated on valdation data. If cross validation is performed then this metric is calculated
using cross validation.

• cv_parent_hpo (bool, optional (default=False)) – Whether we want to apply
cross validation in parent hpo loop or not?. If given, the parent hpo loop will optimize
the cross validation score. The model is fitted on whole training data (training+validation)

2 https://ai4water.readthedocs.io/en/latest/models/models.html#ai4water.models.CNN
3 https://ai4water.readthedocs.io/en/latest/models/models.html#ai4water.models.LSTM
4 https://ai4water.readthedocs.io/en/latest/models/models.html#ai4water.models.CNNLSTM
5 https://ai4water.readthedocs.io/en/latest/models/models.html#ai4water.models.LSTMAutoEncoder
6 https://ai4water.readthedocs.io/en/latest/models/models.html#ai4water.models.TCN
7 https://ai4water.readthedocs.io/en/latest/models/models.html#ai4water.models.TFT
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after cross validation and the metrics printed (other than parent_val_metric) are calculated
on the based the updated model i.e. the one fitted on whole training (trainning+validation)
data.

• cv_child_hpo (bool, optional (default=False)) – Whether we want to apply
cross validation in child hpo loop or not?. If False, then val_score will be caclulated on val-
idation data. The type of cross validator used is taken from model.config[‘cross_validator’]

• monitor (Union[str, list], optional, (default=None)) – Nmaes of perfor-
mance metrics to monitor in parent hpo loop. If None, then R2 is monitored for regression
and accuracy for classification.

• mode (str, optional (default="regression")) – whether this is a regression
problem or classification

• num_classes (int, optional (default=None)) – number of classes, only relevant
if mode==”classification”.

• category (str, optional (detault="DL")) – either “DL” or “ML”. If DL, the
pipeline is optimized for neural networks.

• **model_kwargs – any additional key word arguments for ai4water’s Model

References

_build_model(model: dict, val_metric: str, x_transformation, y_transformation, prefix: Optional[str],
verbosity: int = 0, batch_size: int = 32, lr: float = 0.001)→ ai4water.main.Model

build the ai4water Model. When overwriting this method, the user must return an instance of ai4water’s
Model_ class. batch_size : only used when category is “DL”. lr : only used when category is “DL”

add_dl_model(model: Callable, space: Union[list, ai4water.hyperopt._space.Real,
ai4water.hyperopt._space.Categorical, ai4water.hyperopt._space.Integer])→ None

adds a deep learning model to be considered.

Parameters

• model (callable) – the model to be added

• space (list) – the search space of the model

add_model(model: dict)→ None
adds a new model which will be considered during optimization.

Parameters model (dict) – a dictionary of length 1 whose value should also be a dictionary of
parameter space for that model

Example

>>> pl = OptimizePipeline(...)
>>> pl.add_model({"XGBRegressor": {"n_estimators": [100, 200,300, 400, 500]}})

baseline_results(x=None, y=None, data=None, test_data=None, fit_on_all_train_data: bool = True)→
tuple

Returns default performance of all models.

It runs all the models with their default parameters and without any x and y transformation. These results
can be considered as baseline results and can be compared with optimized model’s results. The model is
trained on ‘training’+’validation’ data.
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Parameters

• x – the input data for training

• y – the target data for training

• data – raw unprepared and unprocessed data from which x,y pairs for both training and
test will be prepared. It is only required if x, y are not provided.

• test_data – a tuple/list of length 2 whose first element is x and second value is y. The
is the data on which the peformance of optimized pipeline will be calculated. This should
only be given if data argument is not given.

• fit_on_all_train_data (bool, optional (default=True)) – If true, the model
is trained on (training+validation) data. This is based on supposition that the data is split-
ted into training, validation and test sets. The optimization of pipeline was performed on
validation data. But now, we are training the model on all available training data which is
(training + validation) data. If False, then model is trained only on training data.

Returns a tuple of two dictionaries. - a dictionary of val_scores on test data for each model - a
dictionary of metrics being monitored for each model on test data.

Return type tuple

be_best_model_from_config(x=None, y=None, data=None, test_data=None, metric_name: Optional[str]
= None, model_name: Optional[str] = None, verbosity=1)→
ai4water.main.Model

Build and Evaluate the best model with respect to metric from config.

Parameters

• x – the input data for training

• y – the target data for training

• data – raw unprepared and unprocessed data from which x,y pairs for both training and
test will be prepared. It is only required if x, y are not provided.

• test_data – a tuple/list of length 2 whose first element is x and second value is y. The
is the data on which the peformance of optimized pipeline will be calculated. This should
only be given if data argument is not given.

• metric_name (str) – the metric with respect to which the best model is fetched and then
built/evaluated. If not given, the best model is built/evaluated with respect to evaluation
metric.

• model_name (str, optional) – If given, the best version of this model will be fetched
and built. The ‘best’ will be decided based upon metric_name

• verbosity (int, optinoal (default=1)) – determines the amount of print informa-
tion

Return type an instance of trained ai4water Model

bfe_all_best_models(x=None, y=None, data=None, test_data=None, metric_name: Optional[str] =
None, fit_on_all_train_data: bool = True, verbosity: int = 0)→ None

builds, trains and evaluates best versions of all the models. The model is trained on ‘training’+’validation’
data.

Parameters

• x – the input data for training

• y – the target data for training
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• data – raw unprepared and unprocessed data from which x,y pairs for both training and
test will be prepared. It is only required if x, y are not provided.

• test_data – a tuple/list of length 2 whose first element is x and second value is y. The
is the data on which the peformance of optimized pipeline will be calculated. This should
only be given if data argument is not given.

• metric_name (str) – the name of metric to determine best version of a model. If not
given, parent_val_metric will be used.

• fit_on_all_train_data (bool, optional (default=True)) – If true, the model
is trained on (training+validation) data. This is based on supposition that the data is split-
ted into training, validation and test sets. The optimization of pipeline was performed on
validation data. But now, we are training the model on all available training data which is
(training + validation) data. If False, then model is trained only on training data.

• verbosity (int, optional (default=0)) – determines the amount of print informa-
tion

Return type None

bfe_best_model_from_scratch(x=None, y=None, data=None, test_data=None, metric_name:
Optional[str] = None, model_name: Optional[str] = None,
fit_on_all_train_data: bool = True, verbosity: int = 1)→
ai4water.main.Model

Builds, Trains and Evaluates the best model with respect to metric from scratch. The model is trained on
‘training’+’validation’ data. Running this mothod will also populate taylor_plot_data_ dictionary.

Parameters

• x – the input data for training

• y – the target data for training

• data – raw unprepared and unprocessed data from which x,y pairs for both training and
test will be prepared. It is only required if x, y are not provided.

• test_data – a tuple/list of length 2 whose first element is x and second value is y. The
is the data on which the peformance of optimized pipeline will be calculated. This should
only be given if data argument is not given.

• metric_name (str) – the metric with respect to which the best model is searched and then
built/trained/evaluated. If None, the best model is chosen based on the evaluation metric.

• model_name (str, optional) – If given, the best version of this model will be found
and built. The ‘best’ will be decided based upon metric_name

• fit_on_all_train_data (bool, optional (default=True)) – If true, the model
is trained on (training+validation) data. This is based on supposition that the data is split-
ted into training, validation and test sets. The optimization of pipeline was performed on
validation data. But now, we are training the model on all available training data which is
(training + validation) data. If False, then model is trained only on training data.

• verbosity (int, optional (default=1)) – determines amount of information to be
printed.

Return type an instance of trained ai4water Model

bfe_model_from_scratch(iter_num: int, x=None, y=None, data=None, test_data=None,
fit_on_all_train_data: bool = True)→ ai4water.main.Model

Builds, trains and evalutes the model from a specific iteration. The model is trained on ‘train-
ing’+’validation’ data.
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Parameters

• iter_num (int) – iteration number from which to choose the model

• x – the input data for training

• y – the target data for training

• data – raw unprepared and unprocessed data from which x,y pairs for both training and
test will be prepared. It is only required if x, y are not provided.

• test_data – a tuple/list of length 2 whose first element is x and second value is y. The
is the data on which the peformance of optimized pipeline will be calculated. This should
only be given if data argument is not given.

• fit_on_all_train_data (bool, optional (default=True)) – If true, the model
is trained on (training+validation) data. This is based on supposition that the data is split-
ted into training, validation and test sets. The optimization of pipeline was performed on
validation data. But now, we are training the model on all available training data which is
(training + validation) data. If False, then model is trained only on training data.

Return type an instance of trained ai4water Model

change_child_iteration(model: dict)
We may want to change the child hpo iterations for one or more models. For example we may want to run
only 10 iterations for LinearRegression but 40 iterations for XGBRegressor. In such a case we can use this
function to modify child hpo iterations for one or more models. The iterations for all the remaining models
will remain same as defined by the user at the start. This method updated _child_iters dictionary

Parameters model (dict) – a dictionary whose keys are names of models and values are number
of iterations for that model during child hpo

Example

>>> pl = OptimizePipeline(...)
>>> pl.change_child_iteration({"XGBRegressor": 10})
If we want to change iterations for more than one models
>>> pl.change_child_iteration(({"XGBRegressor": 30,
>>> "RandomForestRegressor": 20}))

compare_models(metric_name: Optional[str] = None, plot_type: str = 'circular', show: bool = False,
**kwargs)→ matplotlib.axes._axes.Axes

Compares all the models with respect to a metric and plots a bar plot.

metric_name [str, optional] The metric with respect to which to compare the models.

plot_type [str, optional] if “circular” then easy_mpl.circular_bar_plot is drawn other-
wise a simple bar_plot is drawn.

show [bool, optional] whether to show the plot or not

**kwargs : keyword arguments for easy_mpl.circular_bar_plot or easy_mpl.bar_chart

Return type matplotlib.pyplot.Axes

config()→ dict
Returns a dictionary which contains all the information about the class and from which the class can be
created.
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Returns a dictionary with two keys init_paras and runtime_paras and version_info.

Return type dict

dumbbell_plot(x=None, y=None, data=None, test_data=None, metric_name: Optional[str] = None,
fit_on_all_train_data: bool = True, figsize: Optional[tuple] = None, show: bool = True,
save: bool = True)→ matplotlib.axes._axes.Axes

Generate Dumbbell plot as comparison of baseline models with optimized models. Not that this command
will train all the considered models, so this can be expensive.

Parameters

• x – the input data for training

• y – the target data for training

• data – raw unprepared and unprocessed data from which x,y pairs for both training and
test will be prepared. It is only required if x, y are not provided.

• test_data – a tuple/list of length 2 whose first element is x and second value is y. The
is the data on which the peformance of optimized pipeline will be calculated. This should
only be given if data argument is not given.

• metric_name (str) – The name of metric with respect to which the models have to be
compared. If not given, the evaluation metric is used.

• fit_on_all_train_data (bool, optional (default=True)) – If true, the model
is trained on (training+validation) data. This is based on supposition that the data is split-
ted into training, validation and test sets. The optimization of pipeline was performed on
validation data. But now, we are training the model on all available training data which is
(training + validation) data. If False, then model is trained only on training data.

• figsize (tuple) – If given, plot will be generated of this size.

• show (bool) – whether to show the plot or not

• save – By default True. If False, function will not save the resultant plot in current working
directory.

Return type matplotlib Axes

fit(x: Optional[numpy.ndarray] = None, y: Optional[numpy.ndarray] = None, data:
Optional[pandas.core.frame.DataFrame] = None, validation_data: Optional[Tuple[numpy.ndarray,
numpy.ndarray]] = None, previous_results: Optional[dict] = None, process_results: bool = True)→
ai4water.hyperopt._main.HyperOpt
Optimizes the pipeline for the given data.

Parameters

• x (np.ndarray) – input training data

• y (np.ndarray) – output/target/label data. It must of same length as x.

• data – A pandas dataframe which contains input (x) and output (y) features Only required
if x and y are not given. The training and validation data will be extracted from this data.

• validation_data – validation data on which pipeline is optimized. Only required if
data is not given.

• previous_results (dict, optional) – path of file which contains xy values.

• process_results (bool) –

Returns
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• an instance of ai4water.hyperopt.HyperOpt class which is used for

• optimization.

classmethod from_config(config: dict)→ autotab._main.OptimizePipeline
Builds the class from config dictionary

Parameters config (dict) – a dictionary which contains init_paras key.

Return type an instance of OptimizePipeline class

classmethod from_config_file(config_file: str)→ autotab._main.OptimizePipeline
Builds the class from config file.

Parameters config_file (str) – complete path of config file which has .json extension

Return type an instance of OptimizePipeline class

get_best_metric(metric_name: str)→ float
returns the best value of a particular performance metric. The metric must be recorded i.e. must be given
as monitor argument.

Parameters metric_name (str) – Name of performance metric

Returns the best value of performance metric acheived

Return type float

get_best_metric_iteration(metric_name: Optional[str] = None)→ int
returns iteration of the best value of a particular performance metric.

Parameters metric_name (str, optional) – The metric must be recorded i.e. must be given
as monitor argument. If not given, then evaluation metric is used.

get_best_pipeline_by_metric(metric_name: Optional[str] = None)→ dict
returns the best pipeline with respect to a particular performance metric.

Parameters metric_name (str, optional) – The name of metric whose best value is to be
retrieved. The metric must be recorded i.e. must be given as monitor.

Returns

a dictionary with follwoing keys

• path path where the model is saved on disk

• model name of model

• x_transfromations transformations for the input data

• y_transformations transformations for the target data

• iter_num iteration number on which this pipeline was achieved

Return type dict

get_best_pipeline_by_model(model_name: str, metric_name: Optional[str] = None)→ tuple
returns the best pipeline with respect to a particular model and performance metric. The metric must be
recorded i.e. must be given as monitor argument.

Parameters

• model_name (str) – The name of model for which best pipeline is to be found. The best
is defined by metric_name.
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• metric_name (str, optional) – The name of metric with respect to which the best
model is to be retrieved. If not given, the best model is defined by the evaluation metric.

Returns

a tuple of length two

• first value is a float which represents the value of metric

• second value is a dictionary of pipeline with four keys

x_transformation y_transformation model path iter_num

Return type tuple

post_fit(x=None, y=None, data=None, test_data: Optional[Union[list, tuple]] = None,
fit_on_all_train_data: bool = True, show: bool = True)→ None

post processing of results to draw dumbell plot and taylor plot.

Parameters

• x – the input data for training

• y – the target data for training

• data – raw unprepared and unprocessed data from which x,y pairs for both training and
test will be prepared. It is only required if x, y are not provided.

• test_data – a tuple/list of length 2 whose first element is x and second value is y. The
is the data on which the peformance of optimized pipeline will be calculated. This should
only be given if data argument is not given.

• fit_on_all_train_data (bool, optional (default=True)) – If true, the model
is trained on (training+validation) data. This is based on supposition that the data is split-
ted into training, validation and test sets. The optimization of pipeline was performed on
validation data. But now, we are training the model on all available training data which is
(training + validation) data. If False, then model is trained only on training data.

• show (bool, optional (default=True)) – whether to show the plots or not

Return type None

remove_model(models: Union[str, list])→ None
removes an model/models from being considered. The follwoing attributes are updated.

• models

• model_space

• _child_iters

Parameters models (list, str) – name or names of model to be removed.
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Example

>>> pl = OptimizePipeline(...)
>>> pl.remove_model("ExtraTreeRegressor")

report(write: bool = True)→ str
makes the reprot and writes it in text form

save_results()→ None
saves the results. It is called automatically at the end of optimization. It saves tried models and transfor-
mations at each step as json file with the name parent_suggestions.json.

An errors.csv file is saved which contains validation peformance of the models at each optimization
iteration with respect to all metrics being monitored.

The performance of each model during child optimization iteration is saved as a csv file with the name
child_val_scores.csv.

The global seeds for parent and child iterations are also saved in csv files with name parent_seeds.csv
and child_seeds.csv. All of these results are saved in pl.path folder.

Return type None

taylor_plot(x=None, y=None, data=None, test_data=None, fit_on_all_train_data: bool = True, plot_bias:
bool = True, figsize: Optional[tuple] = None, show: bool = True, save: bool = True, verbosity:
int = 0, **kwargs)→ matplotlib.figure.Figure

makes Taylor’s plot using the best version of each model. The number of models in taylor plot will be equal
to the number of models which have been considered by the model.

Parameters

• x – the input data for training

• y – the target data for training

• data – raw unprepared and unprocessed data from which x,y pairs for both training and
test will be prepared. It is only required if x, y are not provided.

• test_data – a tuple/list of length 2 whose first element is x and second value is y. The
is the data on which the peformance of optimized pipeline will be calculated. This should
only be given if data argument is not given.

• fit_on_all_train_data (bool, optional (default=True)) – If true, the model
is trained on (training+validation) data. This is based on supposition that the data is split-
ted into training, validation and test sets. The optimization of pipeline was performed on
validation data. But now, we are training the model on all available training data which is
(training + validation) data. If False, then model is trained only on training data.

• plot_bias (bool, optional) – whether to plot the bias or not

• figsize (tuple, optional) – a tuple determining figure size

• show (bool, optional) – whether to show the plot or not

• save (bool, optional) – whether to save the plot or not

• verbosity (int, optional (default=0)) – determines the amount of print informa-
tion

• **kwargs – any additional keyword arguments for taylor_plot function of easy_mpl.

Return type matplotlib.pyplot.Figure
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update_model_space(space: dict)→ None
updates or changes the search space of an already existing model

Parameters space – a dictionary whose keys are names of models and values are parameter
space for that model.

Return type None

Example

>>> pl = OptimizePipeline(...)
>>> rf_space = {'max_depth': [5,10, 15, 20],
>>> 'n_models': [5,10, 15, 20]}
>>> pl.update_model_space({"RandomForestRegressor": rf_space})
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EIGHT

EXAMPLES

Below is a gallery of examples

8.1 regression

from ai4water.datasets import busan_beach
from skopt.plots import plot_objective
from autotab import OptimizePipeline

data = busan_beach()

pl = OptimizePipeline(
inputs_to_transform=data.columns.tolist()[0:-1],
outputs_to_transform=data.columns.tolist()[-1:],
parent_iterations=30,
child_iterations=0, # don't optimize hyperparamters only for demonstration
parent_algorithm='bayes',
child_algorithm='random',
eval_metric='mse',
monitor=['r2', 'r2_score'],
models=[ "LinearRegression",

"LassoLars",
"Lasso",
"RandomForestRegressor",
"HistGradientBoostingRegressor",
"CatBoostRegressor",
"XGBRegressor",
"LGBMRegressor",
"GradientBoostingRegressor",
"ExtraTreeRegressor",
"ExtraTreesRegressor"
],

input_features=data.columns.tolist()[0:-1],
output_features=data.columns.tolist()[-1:],
split_random=True,

)

results = pl.fit(data=data, process_results=False)
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Out:

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/experimental/enable_hist_gradient_boosting.py:17: UserWarning: Since␣
→˓version 1.0, it is not needed to import enable_hist_gradient_boosting anymore.␣
→˓HistGradientBoostingClassifier and HistGradientBoostingRegressor are now stable and␣
→˓can be normally imported from sklearn.ensemble.
"Since version 1.0, "

Iter mse r2 r2_score mse
WARNING:tensorflow:From /home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/
→˓latest/lib/python3.7/site-packages/ai4water/utils/utils.py:1685: is_gpu_available␣
→˓(from tensorflow.python.framework.test_util) is deprecated and will be removed in a␣
→˓future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

0 2.73e+15 0.2340123 0.02512779
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

1
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

2
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

3 0.4546905
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

4
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/linear_model/_base.py:138: FutureWarning: The default of 'normalize'␣
→˓will be set to False in version 1.2 and deprecated in version 1.4.
If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing␣
→˓stage. To reproduce the previous behavior:

from sklearn.pipeline import make_pipeline

model = make_pipeline(StandardScaler(with_mean=False), LassoLars())

If you wish to pass a sample_weight parameter, you need to pass it as a fit parameter to␣
→˓each step of the pipeline as follows:

(continues on next page)

34 Chapter 8. Examples



autotab, Release 0.1

(continued from previous page)

kwargs = {s[0] + '__sample_weight': sample_weight for s in model.steps}
model.fit(X, y, **kwargs)

Set parameter alpha to: original_alpha * np.sqrt(n_samples).
FutureWarning,

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

5
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

6
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/linear_model/_coordinate_descent.py:648: ConvergenceWarning:␣
→˓Objective did not converge. You might want to increase the number of iterations, check␣
→˓the scale of the features or consider increasing regularisation. Duality gap: 8.
→˓223e+14, tolerance: 2.710e+11
coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

7
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:244: RuntimeWarning: overflow encountered in reduce
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

8
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

9 2.71e+15 0.03148921
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

10 2.69e+15 0.03712889
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

11
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/linear_model/_base.py:138: FutureWarning: The default of 'normalize'␣
→˓will be set to False in version 1.2 and deprecated in version 1.4.

(continues on next page)
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If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing␣
→˓stage. To reproduce the previous behavior:

from sklearn.pipeline import make_pipeline

model = make_pipeline(StandardScaler(with_mean=False), LassoLars())

If you wish to pass a sample_weight parameter, you need to pass it as a fit parameter to␣
→˓each step of the pipeline as follows:

kwargs = {s[0] + '__sample_weight': sample_weight for s in model.steps}
model.fit(X, y, **kwargs)

Set parameter alpha to: original_alpha * np.sqrt(n_samples).
FutureWarning,

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

12
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:244: RuntimeWarning: overflow encountered in reduce
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

13
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

14 2.53e+15 0.09695015
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:244: RuntimeWarning: overflow encountered in reduce
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

15
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

16
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered

(continues on next page)
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best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])
17 0.5653205
/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

18
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/preprocessing/_data.py:3218: RuntimeWarning: overflow encountered in␣
→˓power
out[pos] = (np.power(x[pos] + 1, lmbda) - 1) / lmbda

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:244: RuntimeWarning: overflow encountered in reduce
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

19
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/base.py:444: UserWarning: X has feature names, but PowerTransformer␣
→˓was fitted without feature names
f"X has feature names, but {self.__class__.__name__} was fitted without"

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/base.py:444: UserWarning: X has feature names, but PowerTransformer␣
→˓was fitted without feature names
f"X has feature names, but {self.__class__.__name__} was fitted without"

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

20
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/base.py:444: UserWarning: X has feature names, but␣
→˓QuantileTransformer was fitted without feature names
f"X has feature names, but {self.__class__.__name__} was fitted without"

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/base.py:444: UserWarning: X has feature names, but␣
→˓QuantileTransformer was fitted without feature names
f"X has feature names, but {self.__class__.__name__} was fitted without"

/home/docs/checkouts/readthedocs.org/user_builds/autotab/checkouts/latest/autotab/_main.
→˓py:2472: RuntimeWarning: All-NaN axis encountered
best_so_far = func(self.metrics_best_.loc[:self.parent_iter_, _metric])

21 5.4e+13 0.6369561 0.4878222 5.40484e+13
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

22
23
24 0.7440143
25
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/preprocessing/_data.py:3218: RuntimeWarning: overflow encountered in␣
→˓power

(continues on next page)
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out[pos] = (np.power(x[pos] + 1, lmbda) - 1) / lmbda
/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:244: RuntimeWarning: overflow encountered in reduce
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:244: RuntimeWarning: overflow encountered in reduce
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)

26 0.8295779
27
28
29

pl.optimizer_._plot_convergence(save=False)
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pl.optimizer_._plot_parallel_coords(figsize=(16, 8), save=False)

pl.optimizer_._plot_distributions(save=False)
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Out:

<Figure size 2100x2100 with 16 Axes>

pl.optimizer_.plot_importance(save=False)
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_ = plot_objective(results)
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pl.optimizer_._plot_evaluations(save=False)
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pl.optimizer_._plot_edf(save=False)
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pl.bfe_all_best_models(data=data)
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Out:

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/numpy/core/_methods.py:233: RuntimeWarning: overflow encountered in multiply
x = um.multiply(x, x, out=x)

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/linear_model/_base.py:138: FutureWarning: The default of 'normalize'␣
→˓will be set to False in version 1.2 and deprecated in version 1.4.
If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing␣
→˓stage. To reproduce the previous behavior:

from sklearn.pipeline import make_pipeline

model = make_pipeline(StandardScaler(with_mean=False), LassoLars())

If you wish to pass a sample_weight parameter, you need to pass it as a fit parameter to␣
→˓each step of the pipeline as follows:

kwargs = {s[0] + '__sample_weight': sample_weight for s in model.steps}
model.fit(X, y, **kwargs)

Set parameter alpha to: original_alpha * np.sqrt(n_samples).
FutureWarning,

pl.dumbbell_plot(data=data, save=False)
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Out:

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/linear_model/_base.py:138: FutureWarning: The default of 'normalize'␣
→˓will be set to False in version 1.2 and deprecated in version 1.4.
If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing␣
→˓stage. To reproduce the previous behavior:

from sklearn.pipeline import make_pipeline

model = make_pipeline(StandardScaler(with_mean=False), LassoLars())

If you wish to pass a sample_weight parameter, you need to pass it as a fit parameter to␣
→˓each step of the pipeline as follows:

kwargs = {s[0] + '__sample_weight': sample_weight for s in model.steps}
model.fit(X, y, **kwargs)

Set parameter alpha to: original_alpha * np.sqrt(n_samples).
FutureWarning,

/home/docs/checkouts/readthedocs.org/user_builds/autotab/envs/latest/lib/python3.7/site-
→˓packages/sklearn/linear_model/_coordinate_descent.py:648: ConvergenceWarning:␣
→˓Objective did not converge. You might want to increase the number of iterations, check␣
→˓the scale of the features or consider increasing regularisation. Duality gap: 4.
→˓075e+16, tolerance: 9.458e+12 (continues on next page)
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coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive

<AxesSubplot:xlabel='mse', ylabel='Models'>

pl.dumbbell_plot(data=data, metric_name='r2', save=False)

Out:

<AxesSubplot:xlabel='r2', ylabel='Models'>

pl.taylor_plot(data=data, save=False)
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Out:

<Figure size 640x480 with 1 Axes>

pl.compare_models()
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Out:

<PolarAxesSubplot:>

pl.compare_models(plot_type="bar_chart")

Out:

<AxesSubplot:xlabel='mse'>

pl.compare_models("r2", plot_type="bar_chart")
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Out:

<AxesSubplot:xlabel='r2'>

print(f"all results are save in {pl.path} folder")

Out:

all results are save in /home/docs/checkouts/readthedocs.org/user_builds/autotab/
→˓checkouts/latest/examples/results/pipeline_opt_20220504_162449 folder

pl.cleanup()

Total running time of the script: ( 3 minutes 7.167 seconds)
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